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Analytic procedures are presented for the evaluation of the free-free exchange integrals 
which occur in the variational approach to scattering theory. Expressions are obtained 
which are suitable for numerical calculation on a computer. The method is based on a 
(known) analytic formula for the complex Laplace transform of the exponential integral 
function. 

Interest in the application of variational methods in the scattering of electrons 
and positrons by atoms has increased substantially in recent years [l-5]. Such 
calculations involve integrals of a type not encountered in bound state problems. 
These incorporate both bound state and continuum type functions. The evaluation 
of such integrals has been discussed by Lyons and Nesbet [6] and by Harris and 
Michels [7]. In our work on the scattering problem, we have somewhat different 
continuum functions than employed by these authors and we have developed 
procedures for the required integrals. These procedures enable analytic expressions 
to be obtained for all integrals, including the troublesome free-free exchange 
integrals. The expressions are easily adopted for numerical evaluation on a com- 
puter. 

The continuum wavefunctions should behave asymptotically as appropriate 
combinations of the linearly independent solutions for a free particle. The radial 
parts of the linearly independent solution are the spherical Bessel and Neumann 
functions j,(kr) and n@r). In the literature cited, the component of the external 
solution which behaves asymptotically as j,(kr) has been referred to as the “S” 
function, while the other has been called a “C” function. The singularity of the 
Neumann function at the origin is troublesome in such calculations, and a choice 
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suggested by Armstead [8] has frequently been employed. Neglecting angular 
factors, this is 

G = [&,l(kd + zk+rl -“h.+dkJ)l. a (14 

The subscript a refers to a particular channel 

The function C, given above has the potentially undesirable property that it 
differs from the correct function n, by terms of order r-3 at large r. It is, of course, 
not singular at the origin. Since inaccuracies in the asymptotic functions must be 
compensated by the “short-range functions,” we believe that it is more desirable 
to use functions which are correct for values of r for which terms of order r-3 are 
not negligible. The following choice for the function C, is nonsingular and differs 
from the free particle solution by terms which are exponentially small at large r: 

C, = (1 - eP)21a+1 n&&r). Pa) 

We also find it convenient to introduce a similar exponential factor into S, , 
although this is not required in order to prevent a singularity 

SI = (1 - e--vr)2z+1 j,(kr). (2b) 

The “cut-off” factors involving the exponentials actually make the integrals 
easier to compute and at the same time are useful in testing the quality of the 
results obtained. The calculated cross sections (or R matrix elements) should be 
independent of the values chosen for /I and y, since these quantities do not affect 
the asymptotic values of S, and C, . The results can be tested for stability with 
respect to variation of /I and y. Stability must be obtained if the calculations are 
to have physical significance. 

We are interested in matrix elements of the type 

(3) 

in which the 7 are Slater type orbitals 

(4) 

N, is a normalization constant, and n, > I, . The function Y~~,d(Q,Q,) is an 
angular function for two particles for a state specified by total angular momentum 
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L, azimuthal component M, and individual particle angular momenta I, and ld . 
Specifically, 

Here (l,m,l,m, [ &LM) is a vector coupling coefficient as defined by Edmonds [9]. 
Integrals in which one or both S’s are replaced by a C are also required. Integrals of 
this class are free-free exchange integrals. Although our free-free direct integrals 
and bound-free integrals differ in some respects from those considered in Refs. 
[6,7], their evaluation does not pose serious problems and many of the procedures 
described in those references are applicable. Our detailed considerations here will 
be limited to the troublesome integrals of type (3). 

We proceed by expressing the functions j, and n, as finite trigonometric series. 
Thus, 

‘+l tz) sin(kr + 0,) 
ndkr) = C urn rm , 

m=1 
(6) 

in which em is either 0 or 7~12 and ~2’ . is a number. A similiar series exists for j, . 
The usefulness of the cut-off factors is that when the series expansions (6) are 
substituted in the matrix element, no singularities exist at the origin. Each term 
in SI or CI is proportional to rz or a higher power of r near the origin. 

After the angular integrations have been performed, the matrix element (3) can 
be expressed as a sum of integrals of the form 

= 
s s 

mdr m dx(l - e-pe)z1 ,P1ePe sin(k,x + 0,) 
0 0 

1 

x 5 (1 - eP’r)zZ r’War sin(k,r + 0,). 
> 

(7) 

The specific relation between the matrix element and the U integrals is 
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in which C is a numerical coefficient depending on the angular momenta involved 

w, L > t3 ; 1, lb 3 L) = C-1) z”+z”-“[(2z, + 1)(21, + 1)(2Zc -I- 1)(21, + l)]‘/” 

x IF ; iylk : kNk ; 3. (9) 

Here {a**} represents a 6 - j symbol, while (**e) stands for a 3 - j symbol and 

11 = 21, + 1, I, = 21, + 1, 
(10) 

n, = n, $2 - mb >, n, $1 - lb ; n2=n,+2-mmd>n,+l-l~, 

while r<(r>) is the lesser (greater) of r and x. The index 1 lies in the range 

max{l 1, - lb I , I 1, - ld I> d 1 < min{L + lb ,I, + Id. 

We see that both n, + I and n2 + I >, 1. Further, it is easily verified that 

4 - (1 + 1) 3 0, and 1, - (I + 1) 3 0, 

so that there are no singularities at either x = 0 or r = 0. 
Let us consider the integral on x first. Thus 

U=A+B 

with 

A= 
s 

m dr(1 - eP)z2 rnz-z-le-qr sin(k,r + 6,) II(r)! 
0 

and 

B= 
I 

m dr(1 - eP)z2 rnz+‘eKqr sin(k,r + 6,) 12(r), 
0 

Z,(r) = j: dx(1 - e+)‘l xnl+‘e-” sin(k,x + f?,), 

I,(r) = j” dx(1 - e+3c)z1 xn1-z-1e-D2 sin(k,x + 0,). 
T 

(11) 

(12) 

(13) 

In order to evaluate these expressions, it is convenient to introduce the auxiliary 
integral 

FCp, 6 m, a, k , 4 , k2 , 0,) 

s 
m ZZZ e-‘“(1 - e-az)z x” sin(k,x + 0,) sin(k,x + 0,) dx. (14) 
0 
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This integral is defined for m > --I (I > 0) and can be evaluated by elementary 
techniques. A computer program was written to evaluate F using a recurrence 
relation based on integration by parts. The procedure is described briefly in the 
appendix. We also need the indefinite integral (m > 0) 

s xme-ux sin(kx + 19) dx 

m+1 
= m!e-ux 

iI1 (m + : _ v)! (p:y;y,2 swx + 0 + 4, (15) 

in which 01 = tan-l k/CL. 
We also require an integral similar to (13) but with the parameter m negative. 

This integral can be given in terms of functions related to the exponential integral 

s 
m 
T 

5 sin(kx + 4) dx = Im 
i $ &b - Wrl/, (16) 

in which E,, is [lo] 

E,(z) = 1: q dt. 

This function is defined for z such that Re(z) > 0. 
The double integral A [Eq. (12)] can be evaluated using Eqs. (14) and (15), since 

the exponent Q + I in I1 is never negative. In this case, it is convenient to expand 
the factor (1 - e-flz)zl in binomial series: 

A = @h + I)! ? (-l)” f) 1 [(p + +)2 +‘ka”]‘nl+m t=o 

x F(q, 1, , nz - I- 1, Y, kd , ed , 0, 6 + 41 + I+ 1)) 

n,+z+1 

-c 

1 
v=l (4 + I+ 1 - v)! [(p + t/5$ + kb2j’+ 

x F(P + 4 + tP, h, n2 + n, - v, y, k, , ed, kb, ‘Aa + 41. (17) 

The parameter a is defined by 

01 = tan-l [k,/(p + t/3)]. (18) 
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The complications of the exchange problem are contained in B. There are two 
cases: 

(I) 121 - I- 1 >, 0 

(II) n, - I - 1 < 0. 

Case I can be treated by the procedure used for A. 

B = (% - I - l)! 2 (--ljt (:) %’ (n _ ; _ v)! [(p + t/J; + ,I$],/2 
t=o u=l 1 

x F(P + 4 + tB, h, n2 + n, - V, Y, kd , &, k, , 0, + ~a). (19) 

The quantity 01 remains as defined in Eq. [15]. 
In Case II, (13) is used to calculate I2 . We then encounter integrals of the form 

e-VE,(t) dt, (20) 

in which m and n are positive integers and z is complex. These integrals can be 
obtained by differentiation of a tabulated integral, the Laplace transform of 
E, [IO]. The result is 

Jm,n(Z) = (-l)“-l[(n 71; “_ 1,!‘)! z++~) ln(l + z) 

+ 2’ C-1)” (n + 
k 

m - k - 111 Z-(n+m-k) 
(n-l-k)! k=l 

(21) 

The computation of Jm,n can be delicate. Equation (18) would appear to indicate 
that J,,Jz) is highly singular at z = 0. However, this is not the case, and there is 
a considerable amount of cancellation between the terms of (18). An alternative 
expression for Jm,%(z) exists which can be used conveniently to generate a power 
series expansion for small 2. 

(22) 
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After some straightforward algebra, we obtain 

B = -4 2 (-1)” (; j $ (-1)s [f j Re(++l) 
t=0 s=O 

x k i’ed+“b’Jm,,(zl/zz) - e~i(e~~eb)Jm,p(zl*/zz)]), (23) 

in which m = n1 + n2 , z1 = q + sy - ikd , 

/.L==++-?rn,, z2 = p f t/3 - ik. (24) 

These expressions can be readily evaluated on a computer using complex arith- 
metic. 

The combination of [17] and either [19] or [23] according to the value of the 
parameters, completes the determination of the free-free exchange integral U, as 
specified by Eq. (6). 

We conclude with a numerical example, which arises in the electron-hydrogen 
scattering problem. This involves the free-free exchange integral with hydrogenic 
2p wavefunctions and continuum functions. We will present results for the com- 
bination 

(25) 

The factor of (2/5) connecting the U functions with I = 0 and I = 2 arises from 
the angular factors in (8). We have compared the results obtained through the 
procedure described here with that obtained by numerical integration in which the 
infinite integrals are terminated at R, (Table I). 

TABLE I 

Value of Combination (25) 

Procedure 
as described & = 20 & = 50 

0 0 2.7714013 2.7714774 2.7714014 

0 7712 -1.1209391 -1.1175317 -1.1209391 

5712 0 -1.1209391 -1.1175484 -1.1209391 

742 7.42 5.0165918 5.0136147 5.0165918 
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The fixed parameters employed have the values (atomic units) 

/3 = 1.0, 

p = 0.5, 

k2 = 0.46. 

The program as constructed appears to yield accurate values to eight significant 
figures. We believe this to be sufficient accuracy for the problems of interest to us. 
Minor changes in the programs could be made which would lead to greater pre- 
cision if this were necessary. Round-off and cancellation errors in the computation 
of J,, are controlled by choosing Eq. (22) instead of Eq. (21) if 

or, if m = OJ, 

I z I < 1.0/m 

z < 0.5. 

The series (22) is terminated when the last term added is less than IO-15. 
One point is obvious from inspection of Table I. If numerical integration is 

considered as a possible simple alternate to the procedure described here, it is 
necessary to continue to large values of 1. As calculations are extended to more 
highly excited states than those of the 12 = 2 shell, the exponential factors in the 
wavefunctions decay less rapidly. We believe that for such states, numerical 
evaluation of the integrals would be a time-consuming alternative. 

APPENDIX: COMPUTATION OF INTEGRALS OF TYPE F 

We consider here computation of integrals of the type F, as defined by Eq. (14). 
For positive values of m, the computation is entirely straightforward and need not 
be described here. Consider then the situation for negative values of m. 

Suppose first that m = - 1 and I = 1. We obtain elementary integrals of the 
form 

I 

a 
= 

[e-u5 _ &.c+a)z] 
sin(k,x + 0,) sin(k,x + 0,) dx 

1 X 

in which + = 0, - pBz , s = k, - pk, . 

5s1/10/3-7 
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We can then obtain values of F for any I (but m = - l), since 

The values of F for m < - 1 are now determined from those obtained for m = -1 
through successive application recurrence of a relation obtained through inter- 
gration by parts. This relation is 

FCp, 6 --m, a, k,, 4yk,y 4) 
= (m - 1)-l {ZuF(p + a, I - 1, -m + 1, a, k, , o1 , k, , 0,) 

- pF(p, 4 --m + 1, a, k, , 4 > k, ,&I 

+ k,@, 4 --m + 1, a, k, ,4 + 42, k, , &I 

+ k,F(p, 1, --m + 1, a, k, 2 4 3 k, 7 4 + 749. 
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